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Abstract

The analogy between the governing equations for the analysis of buckling in elastic structures and the elastodynamic
equations of motion for wave propagation is presented. By employing this analogy, the exact and approximate buckling
stresses of periodic layered materials and continuous fiber composites, respectively, are established. This is performed
by utilizing micromechanically based dispersion relations for elastic wave propagating in the composite materials,
which provide for a given wave length the corresponding phase velocity. By a specific change of variables in these dis-
persion relations, the corresponding buckling stresses can be determined. Results are presented and compared with
solutions based on the mechanics of materials approach as well as with the well known Rosen�s fiber buckling
predictions.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The buckling of fibers in elastic composite materials has been investigated by several authors. In the clas-
sical investigation of Rosen (1964), which has been summarized by Jones (1975), the buckling of fibers was
analyzed by considering the two-dimensional problem of a periodically two-layered composite in which the
fibers and matrix were represented by the stiff and soft layers, respectively. Rosen (1964) considered two
types of buckling modes: shear and transverse buckling modes. In the first type of buckling the fiber and
matrix layers exhibit in-phase deformation, whereas in the latter type the fiber and matrix layers exhibit
0020-7683/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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anti-phase deformation. By applying energy considerations, Rosen (1964) established that the stress buck-
ling in shear mode of very long wave length (compared to the thickness of the stiff fiber layer) is given by
lm/(1 � vf) where lm is the shear modulus of the matrix layer and vf is the volume fraction of the fiber layer.
For the transverse buckling modes, Rosen obtained the buckling stress 2vf[vfEfEm/3(1 � vf)]

1/2, where
Ef and Em are the Young�s moduli of the fiber and matrix layers.

A recent investigation of the buckling of fibers in elastic composite materials has been published by
Parnes and Chiskis (2002). They modeled the composite as a periodic two-layered material and analyzed
the problem by employing a mechanics of materials approach based on Euler–Bernoulli theory of an
infinite fiber layer embedded in an elastic foundation matrix. The interaction between the fiber and matrix
layers was deduced on the basis of elasticity equations. These authors provided a comprehensive list of
references to various investigations of the present subject.

In the present investigation, the analogy between the equations that govern buckling of structures and
elastic wave propagation in solids is utilized to determine the buckling loads of fibers in composite mate-
rials. It turns out that in the framework of the analysis of elastic wave propagation in structural composites,
if a dispersion relation, which provides for a given wave length the corresponding phase velocity, can be
established, it is possible to obtain the buckling load of the structure by a simple change of variables.
For periodic layered composites it is possible, by employing the elastodynamic equations of motion, to
establish the corresponding dispersion curves in an exact manner. By employing the wave-buckling anal-
ogy, the exact critical buckling loads of the periodic layered composite can be readily derived. For periodic
continuous fiber composites, exact dispersion relations are not available. There are on the other hand sev-
eral micromechanically established approximate dispersion relations which can be employed to establish
the buckling stress of the composite. It should be noted that by employing a micromechanical analysis,
one can establish the dispersion relation for a propagating wave in the composite from the known material
properties of the constituents, their volume fraction and their detailed interaction.

This paper is organized as follows. In Section 2, the analogy between the governing equations of elastic
waves and buckling is discussed. This analogy is employed in Section 3 to establish the exact buckling loads
in shear and transverse modes in periodic layered composites. In Section 4, an approximate dispersion rela-
tion of continuous fiber composites which was micromechanically established by Achenbach (1976) and
whose validity has been verified, is employed to obtain the corresponding buckling loads in shear mode.
Possible extensions of the present approach, including the determination of the buckling loads in piezoelec-
tric composites, are discussed in the last section.
2. Buckling-wave propagation analogy

The elastodynamic equations of motion are given by
rjm;j ¼ q
d2um

dt2
j;m ¼ 1; 2; 3 ð1Þ
where rjm, um are the components of the stress tensor and displacement vector, respectively, q is the mass
density of the material and t is the time.

When investigating the propagation of harmonic waves in the x1-direction, for example, in the material it
is assumed that any field variable A has the form:
A ¼ A exp½iðkx1 � xtÞ� ð2Þ
where A is an amplitude factor, k is the wave number, x is the circular frequency and i is the imaginary unit.
By substituting Eq. (2) in (1) it follows that the derivative with respect to x1 should be replaces by ik while
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the derivative with respect to the time t is replaced by �ix. Consequently, the following equations are
established:
ikr11 þ r21;2 þ r31;3 þ qx2u1 ¼ 0

ikr12 þ r22;2 þ r32;3 þ qx2u2 ¼ 0 ð3Þ

ikr13 þ r23;2 þ r33;3 þ qx2u3 ¼ 0
Let us consider next the nonlinear equilibrium equations in terms of the second Piola–Kirchhoff (sym-
metric) stress tensor ~rjm. They are given (e.g., Malvern, 1969; Whitney, 1987) by
½~rjnðdmn þ um;nÞ�;j ¼ 0 j;m; n ¼ 1; 2; 3 ð4Þ
where dmn is the Kronecker delta.
Let us linearize Eq. (4) while assuming that an initial compressive stress r0

11 is acting in the x1-direction,
for example. The resulting equations take the form
rjm;j � r0
11um;11 ¼ 0 j;m ¼ 1; 2; 3 ð5Þ
where ~rjm can be written as rjm due to the linearization.
In analyzing the buckling of a structure in which an initial stress r0

11 is acting in the x1-direction, for
example, every field variable B is assumed to possess the form
B ¼ B exp½ikx1� ð6Þ

where B is an amplitude factor and k is the wave number of the buckled shape. By substituting Eq. (6) in (5)
the derivative with respect to x1 is replaced by ik. Accordingly, Eq. (5) takes the form
ikr11 þ r21;2 þ r31;3 þ r0
11k2u1 ¼ 0

ikr12 þ r22;2 þ r32;3 þ r0
11k2u2 ¼ 0 ð7Þ

ikr13 þ r23;2 þ r33;3 þ r0
11k2u3 ¼ 0
By a comparison of Eq. (3) that governs the propagation of harmonic waves in the x1-direction in elastic
materials with Eq. (7) that has been established for the analysis of buckling of a structure with initial stress
r0

11 acting in the x1-direction, one obtains that the following formal replacement holds:
qx2 () r0
11k2 ð8Þ
This replacement implies that there is an analogy between the analyses of the buckling and elastic wave
propagation in a structure. For example, if the dispersion equation (which provides a relation between
the circular frequency x and the wave number k) for wave propagation in the direction of the layering
of a laminated composite can be established, one can obtain the buckling load of this composite, com-
pressed in the direction of the layering, by replacing q x2 of the layer by the stress in this layer multiplied
by k2. Similarly, if the dispersion equation for waves propagating in the direction of the fibers in a compos-
ite material can be derived, one can immediately employ this analogy for the determination of the buckling
load of these fibers caused by a compressive loading of the composite. In the following two sections, this
analogy will be utilized for the determination of the buckling load of layered and fibrous composites.
3. Exact buckling loads of periodically layered composites by wave propagation analogy

Fig. 1 shows a layered composite that is subjected to an externally applied compressive stress loadings
whose average is r11 (which is the average of the applied compressive stress loadings rðfÞ11 and rðmÞ11 that are
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Fig. 1. (a) Buckling of fibers in shear buckling mode in a periodically layered composite. (b) Buckling of fibers in transverse buckling
mode in a periodically layered composite. (c) The repeating unit cell of the periodically layered composite consists of five layers the
analysis of which enables the modeling of both shear and transverse buckling modes.
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imposed on the fiber and matrix layers). As shown in this figure, the composite can buckle in two different
modes. In the first mode, referred to as shear buckling mode (SBM), the fiber (the stiff layer) and matrix
(the soft layer) exhibit the same deformation shape (in-phase deformation). In the second mode, referred
to as transverse buckling mode (TBM), the fiber and matrix exhibit anti-phase deformation. As can be ob-
served from Fig. 1(a), in order to predict the critical buckling load in SBM and the associated wave length
K = 2p/k, it is necessary to analyze a periodically bilaminated composite. Fig. 1(b) shows on the other hand
that the prediction of the critical buckling load in TBM and the associated wave length, one has to consider
a periodically layered composite that consists of five different layers which repeat themselves. The first, third
and fifth layers are occupied by the matrix material, while the second and forth layers must be occupied by
the fibers.

The prediction of the two types of buckling of the periodically layered material configuration is based on
the analysis of elastic wave propagation in the direction of the layering in a periodically layered composite
in which the repeating unit cell consists of five layers, Fig. 1(c). Once the dispersion relation for such a com-
posite is established, the wave-buckling analogy given by Eq. (8) can be utilized for the determination of the
critical buckling loads and the associated wave lengths in both modes.
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The displacement vector uðaÞ ¼ ½uðaÞ1 ðx1; x2; tÞ; uðaÞ2 ðx1; x2; tÞ� in layer a (a = 1, . . . , 5), due to the wave prop-
agation in the periodically five-layered material of Fig. 1(c) is decomposed as follows:
uðaÞ ¼ r/ðaÞ þ r � wðaÞ ð9Þ

where the potentials /(a)(x1, x2, t) and w(a)(x1, x2, t) satisfy the equations
r2/ðaÞ ¼ qa

ka þ 2la

d2

dt2
/ðaÞ ð10Þ

r2wðaÞ ¼ qa

la

d2

dt2
wðaÞ ð11Þ
where ka and la are the Lame� constants of the material in the layer a. The potential vector w(a) consists of
just one component which we denote henceforth by w(a).

For propagating waves in the layering (x1) direction, we can represent /(a) and w(a) in the form given by
Eq. (2). This reduces Eqs. (10) and (11) to
o
2/ðaÞ

ox2
2

þ n2
a/
ðaÞ ¼ 0 ð12Þ

o
2wðaÞ

ox2
2

þ g2
aw
ðaÞ ¼ 0 ð13Þ
where
n2
a ¼

qax
2

ka þ 2la

� k2; g2
a ¼

qax
2

la

� k2
Consequently,
/ðaÞ ¼ ½AðaÞ1 cosðnax2Þ þ AðaÞ2 sinðnax2Þ� exp½iðkx1 � xtÞ� ð14Þ

and
wðaÞ ¼ ½AðaÞ3 cosðgax2Þ þ AðaÞ4 sinðgax2Þ� exp½iðkx1 � xtÞ� ð15Þ

which result in 20 unknown coefficients AðaÞ1 ; . . . ;AðaÞ4 . The continuity of the displacements and tractions at
the interfaces between all layers including the interface between layer a = 5 and a = 1 (which enforces the
periodicity conditions) yield 20 equations which provides a determinant of order 20 for the exact dispersion
relation for waves in propagating in the 1-direction. The exact buckling loads in SBM and TBM are
obtained by employing Eq. (8) which takes in the present case the form:
qax
2 () r0ðaÞ

11 k2 ð16Þ

where the axial stress r0ðaÞ

11 in the phase is determined from
r0ðaÞ
11 ¼

Ea

E�
�r11 ð17Þ
In this equation, Ea denotes the Young�s modulus of the material within layer a and E* is given by
E� ¼ vf Ef þ ð1� vfÞEm ð18Þ

with Ef, Em are the Young�s moduli of the fiber and matrix materials, respectively, and vf is the volume ratio
of the fibers. Eq. (17) ensures that the axial strains in the 1-direction are equal in all layers. The critical
buckling loads in the two different modes are determined as follows. For a given wave length K find the
two consecutive roots of the determinant (in which replacement (16) has been performed). The correct
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critical buckling loads are those which correspond to the minimal values of K. As is discussed in the
following, the first root of the determinant corresponds to the SBM while the second one provides the
TBM. Consequently, the buckling of the layered composite takes place in the shear mode since TBM occurs
under higher compressive load. This fact has been verified by employing the exact dispersion relation that
has been established by Sun et al. (1968) for solely shear (anti-symmetric) wave propagation in periodically
bilaminated composite (in which the repeating unit cell consists of two distinct layers). Thus, in terms of
elastic wave propagation, the first root of the determinant corresponds to shear (anti-symmetric) wave
propagation in periodically bilaminated composite. This implies that SBM can be directly obtained, in con-
junction with (16), by utilizing the exact dispersion relation given by the 4th-order determinant that was
established by Sun et al. (1968) for such types of wave. Indeed, it can be shown that our 20th-order deter-
minant reduces to that of Sun et al. (1968) for solely shear waves propagating in periodically bilaminated
composite. It should be mentioned that the dispersion relation in the latter case of periodic fiber and matrix
layers has been also given by Brekhovskikh (1960) in the following compact form:
Fig. 2.
of the
mf = 0.
lmgm

lfgf

tan2 gf d f

2
þ tan2 gmdm

2

� �
þ 1þ lmgm

lfgf

� �2
" #

tan
gf d f

2
tan

gmdm

2
¼ 0 ð19Þ
where df and dm are the width of the fiber and matrix layers.
In Fig. 2, results are presented for Em = 3.64 GPa, Ef/Em = 100, mf = 0.2 and mm = 0.35, where mf and mm

denote the Poisson�s ratios of the fiber and matrix materials. This figure exhibits the critical wave length K,
normalized with respect to the width of the fiber layer df, for various amounts of the fiber volume ratio
vf = df/(df + dm) where dm is the width of the matrix layers, see Fig. 1(c). As mentioned above, the critical
wave length are those at which the minimum values of the externally applied loading �r11, namely the buck-
ling load, occur. Both SBM and TBM are shown, together with comparisons with the results obtained by
the mechanics of materials approach of Parnes and Chiskis (2002). Good agreement between the exact and
mechanics of materials approaches is shown to exist.

The corresponding values of the buckling strain ��11 ¼ �r11=E� of the laminated composite that has been
discussed in Fig. 2 are shown in Fig. 3 against vf in both modes. It can be clearly observed that the critical
Comparison between the exact (—) and the mechanics of material (- - -) prediction of the critical wave lengths at which buckling
periodically layered composite occurs against fiber volume fraction. The material constants are: Em = 3.64 GPa, Ef/Em = 100,
2 and mm = 0.35.



Fig. 3. Comparison between the exact (—) and the mechanics of material (- - -) prediction of the critical strains at which buckling of the
periodically layered composite occurs against fiber volume fraction. The material constants are: Em = 3.64 GPa, Ef/Em = 100, mf = 0.2
and mm = 0.35.

Fig. 4. Comparison between the exact (—) and the mechanics of material (- - -) prediction of the critical stress at which buckling in
shear mode of the periodically layered composite occurs against fiber volume fraction. Also shown is the buckling stress provided by
Rosen�s long wave length limit which is given by: �r11 ¼ lm=ð1� vf Þ. The material constants are: Em = 3.64 GPa, Ef/Em = 100, mf = 0.2
and mm = 0.35.
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values SBMs are always lower than the corresponding TBMs. Corresponding to Fig. 3 is Fig. 4 which
shows the shear buckling stress against vf. Also shown in this figure is the buckling stress in shear mode
provided by Rosen�s long wave length limit: �r11 ¼ lm=ð1� vfÞ as well as the buckling stress as predicted
by Parnes and Chiskis (2002) analysis. It is well seen that this limit forms an upper bound toward which
the exact buckling stress approaches as vf increases. The mechanics of materials based buckling stress of
Parnes and Chiskis (2002), on the other hand, is seen to exceed this upper limit as the fiber volume fraction
increases. This results from the approximations involved in the latter analysis. As mentioned by Parnes and
Chiskis (2002), the deviation from Rosen�s long wave length limit is significant at low values of vf. This
observation should be taken into account in the design of composites reinforced by nano-fibers where
the fiber volume ratio is usually low.
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Fig. 5. Comparison between the exact (—) and the mechanics of material (- - -) prediction of the critical stress at which buckling in:
(a) SBM and (b) TBM, of a glass/epoxy periodically layered composite occur against fiber volume fraction. Also shown are the Rosen�s
buckling stresses in shear and transverse modes. The material constants are: Ef = 72.8 GPa, Em = 3.64 GPa, mf = 0.2 and mm = 0.35.
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A final illustration of the prediction of the stress buckling is shown in Fig. 5 for a glass/epoxy period-
ically layered composite. Here Ef = 72.8 GPa, mf = 0.2, Em = 36.4 GPa and mm = 0.35. The figure presents a
comparison between the present exact and mechanics of materials approaches in SBM and TBM. Here too,
Rosen�s long wave limit forms an upper bound to the exact buckling load in shear while the mechanics of
materials analysis exceeds this limit. Also shown is Rosen�s transverse buckling mode which is given by:
2vf[vfEfEm/3(1 � vf)]

1/2. It is clearly seen that for low values of volume fraction vf this TBM prediction
differs significantly from the present exact solution.
4. Buckling loads of continuous reinforced composites by wave propagation analogy

In the present section, the critical buckling loads in in-phase mode of long-fiber composites are predicted
by employing the wave-buckling analogy. Fig. 6 shows a section of a continuous reinforced composite that
is subjected to compressive stress loadings in the fibers direction whose average is �r11. In order to predict
the SBM and the associated buckling-wave length K, a dispersion equation for harmonic shear wave prop-
agation in the fiber direction (x1-direction) of the composite is needed. We were able to detect three micro-
mechanically based dispersion relations that provide the circular frequency x of the shear waves for a given
wave number k = 2p/K. The first dispersion equation is given by Achenbach and Herrmann (1968) which
has been established in the first stage of development of their effective stiffness theory. It is given by
cð1þ vfÞ þ 1� vf

cð1� vfÞ þ 1þ vf

þ jcvf � vf

qfx
2

lmk2
� ð1� vfÞ

qmx2

lmk2

� �
1þ mf

2
cðkaÞ2 þ jc� qfx

2ðkaÞ2

4lmk2

" #
� vfðjcÞ2

¼ 0 ð20Þ
where a is the radius of the circular fiber, c = lf/lm and j = 0.847 being a shear coefficient.
The second dispersion relation has been derived by Achenbach and Sun (1972) and is expressed as a 4th-

order determinant whose elements are given by rather complicated expressions. Finally, the third dispersion
relation has been presented by Achenbach (1976). It is based on an elaborate micromechanical analysis



Fig. 6. Buckling of fibers in shear buckling mode in a continuous fiber composite. The fibers are oriented in the x1-direction.
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using an improved elastic field representation in the fiber and matrix regions of the repeating unit cell. It
provides the following simple expression for the relationship between the frequency and wave number:
vf

qfx
2

k2
þ ð1� vfÞ

qmx2

k2
� a1 þ

a2
2

a4k2 � ðvf a2qfx2=4þ Cqmx2Þ þ a3

¼ 0 ð21Þ
where
a1 ¼ vflf þ ð1� vfÞlm; a2 ¼ vfðlf � lmÞ; a3 ¼ vflf þ
v2

f lm

1� vf

;

a4 ¼ 0.25vfðkf þ 2lfÞa2 þ ðkm þ 2lmÞC
with
C ¼ 4a3

3d
� 3vfa2

4

� �
1

1� vf

� �2

� 1

4
ðd2 � 3a2Þ vf

1� vf

� �2

þ 1

4

d2

3
� vfa2

� �
vf

1� vf

� �2
and d ¼ a
ffiffiffiffiffiffiffiffiffi
p=vf

p
being the size of the repeating square unit cell that consists of a circular fiber of radius a

surrounded by the matrix material. In addition, Achenbach (1976) verified the latter dispersion relation by
comparison with measured data showing satisfactory agreement. In Fig. 7, a comparison between the phase
velocity c = x/k and the wave number k as predicted by these three approximate dispersion relations is
given. The materials constants are: lf/lm = 100, qf/qm = 3, mf = 0.3, mm = 0.35 and vf = 0.5. It can be read-
ily observed that the second and the third dispersion relation (Eq. (21)) are rather close to each other. Due
to the simplicity of Eq. (21), it has been employed in conjunction with the wave-buckling analogy, Eqs.
(16)–(18) in which a = f and m, in order to predict the critical buckling loads of the unidirectional long-fiber
composite. It should be noted that a more accurate formula for computing the effective axial Young�s
modulus E* of the unidirectional composite is given by (Christensen, 1979)
E� ¼ vf Ef þ ð1� vfÞEm þ
4vfð1� vfÞðmf � mmÞ2lm

ð1� vfÞlm=ðkf þ lfÞ þ vflm=ðkm þ lmÞ þ 1
In this way, the equality of the axial strain in the fiber and matrix phases is guaranteed.



Fig. 7. Shear wave propagation in the fiber direction in a continuous fiber composite. Comparison between the phase velocity c,
normalized with respect to the shear wave speed in the matrix cT

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lm=qm

p
, against the wave number k, normalized with respect to

the fiber radius a. Curves 1–3 correspond to the dispersion relations obtained from Achenbach and Herrmann (1968) (Eq. (20)),
Achenbach and Sun (1972) and Achenbach (1976) (Eq. (21)), respectively. The materials constants are: lf/lm = 100, qf/qm = 3,
mf = 0.3, mm = 0.35 and vf = 0.5.
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Let us consider a long-fiber composite in which the fiber volume ratio vf is sufficiently low to justify the
categorization of the composite as dilute. For such a case, Sadowsky et al. (1967) presented a specific anal-
ysis for the prediction of the buckling loads of this type of unidirectional dilute composites. In the analysis
of Sadowsky et al. (1967) the matrix is treated by the methods of elasticity whereas the single fiber is treated
on the basis of the mechanics of materials approach. The two approaches are connected by the fiber–matrix
interfacial conditions. In the final analysis these authors denoted the strain in the fiber by the (non-dimen-
sional) parameter d which in the present notation is given by
d ¼ F
pa2Ef

¼ rðfÞ11

Ef

¼ �r11

E�
ð22Þ
where F is the compression force within the fiber. Sadowsky et al. (1967) presented two types of results. In
the first one, case 1, the fiber buckles into a sine curve but its cross section remains normal to the axis. In the
second type of results, case 2, the cross section of the buckled fiber remains normal to the bent shape of the
central line of the fiber. The latter case corresponds to the commonly used Euler–Bernoulli assumption. In
Fig. 8, the two types of results (cases 1 and 2) of Sadowsky et al. (1967) are shown together with the buck-
ling loads that are predicted on the basis of Eq. (21) in conjunction with (16) for various values of Ef/Em

with vf = 0.01 (which ensures the dilute assumption). It can be observed that, in general, the buckling loads
predicted on the basis of Eqs. (21) and (16) are higher than those given by the dilute analysis. In both anal-
yses, however, d! 0 as Ef/Em!1. This is expected since as the ratio Ef/Em becomes higher, so are the



Fig. 8. A comparison between the buckling loads as predicted by cases 1 and 2 of Sadowsky et al. (1967) dilute composite and those
based on Eq. (21) in conjunction with (16). The materials constants are: mf = 0.2, mm = 0.4 and the fiber volume ratio is vf = 0.01.
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corresponding buckling-wave lengths K. But Ef/Em!1 implies the gradual disappearance of the matrix
yielding in such a case the Euler buckling formula
Fig. 9.
modul
�r11 ¼
F ¼ 4p2Ef I

K2
ð23Þ
where I = pa2/4 is the moment of inertia of the fiber. In conjunction with Eq. (22), this shows that d
becomes vanishingly small.

Consider next the non-dilute case of a continuous fiber composite in which Em = 3.64 GPa, mm = 0.35
and mf = 0.2. Fig. 9 shows the buckling stresses �r11 against the fiber volume ration vf for various values
of fiber to matrix Young�s moduli: Ef/Em. This figure shows that significant differences occur at the higher
Buckling loads of continuous fiber composites against the fiber volume ratio vf for various values of fiber-to-matrix Young�s
i Ef/Em. The material constants are: Em = 3.64 GPa, mm = 0.35 and mf = 0.2. Rosen�s long wave length limit, which is given by:
lm=ð1� vf Þ, coincides with the curve Ef/Em = 1000.
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values of fiber volume ratios. For small values of vf the critical buckling loads are close to each other. It
should be noted that the dependence of the buckling loads on Ef/Em in the dilute case of Fig. 8 was due
to the specific normalization expressed by the parameter d given by Eq. (22). It is interesting to mention
that although Rosen�s long wave length buckling load in shear mode: lm/(1 � vf) has been established
by the analysis of periodic bilaminated material, it coincides in the present case of fiber-reinforced material
with the curve of Ef/Em = 1000 shown in Fig. 9 for all values of vf. It can be concluded, therefore, that
Rosen�s expression is useful in such composites as long as the ratio between the fiber-to-matrix Young�s
moduli is sufficiently high.

The critical buckling loads of the continuous fiber composite are correspond to the minimal values of the
applied load �r11 computed for various magnitudes of wave lengths K. These minimal values have been ob-
tained in all cases shown in Fig. 9 as asymptotic values of K at which K!1. This is illustrated in Fig. 10
for various values of vf in the case in which the ratio of the fiber to matrix Young�s moduli is: Ef/Em = 5.
The asymptotically determined critical buckling load �r11 can be readily obtained from Eq. (21), in conjunc-
tion with the replacement (16) and (17), in the limit of K!1. It is given by the simple expression:
Fig. 10
mm = 0
�r11 ¼
a1a3 � a2

2

a3½vf Ef þ ð1� vfÞEm�
E� ð24Þ
The initial value of �r11 at K = 0 can be also determined from Eq. (21) in the simple form:
�r11 ¼ a1 ð25Þ

Obtaining the critical buckling loads �r11 from the asymptotic values of the wave lengths K in continuous

fiber composites differs from the case of periodically layered composites. In the latter type of composites the
minimal values of K are obtained as real minima at low fiber volume ratio vf and as asymptotic values at
higher values of vf. This is illustrated in Fig. 11 which shows the variation of the applied loading �r11 against
the wave length K for continuous fiber and periodically layered composites in both of which Ef/Em = 100.
For vf = 0.05, Fig. 11(a), the critical buckling load �r11 ¼ 0.96 GPa of the layered composite is determined
from the minimal value of K/df = 15, while for the continuous fiber composite the critical value
. The values of �r11 of continuous fiber composites against the wave lengths K/a. The material constants are: Em = 3.64 GPa,
.35, Ef/Em = 5 and mf = 0.2.



(a) (b)

Fig. 11. The values of �r11 of periodic layered and continuous fiber composites against the wave lengths K. (a) Fiber volume ratio
vf = 0.05, and (b) fiber volume ratio vf = 0.1. The material constants are: Em = 3.64 GPa, mm = 0.35, Ef/Em = 100 and mf = 0.2.
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�r11 ¼ 1.42 GPa is determined from the asymptotic value of K!1. On the other hand, for the higher value
of the fiber volume ratio vf = 0.1, Fig. 11(b), the minimal values of the wave lengths in both types of com-
posites are obtained as asymptotic values. The corresponding buckling load in both cases is: �r11 ¼ 1.5 GPa.
5. Conclusions

The analogy between the equations of elastic wave propagation in solids and the buckling equations has
been utilized to predict the buckling loads in periodic layered and continuous fiber composites. Due to the
availability of exact dispersion relations for periodic layered materials and approximate dispersion relations
for continuous fiber composites, it is possible to establish the corresponding exact and approximate buck-
ling loads in these composites. The present approach can be extended to establish the critical buckling loads
in composites with anisotropic layers, anisotropic fibers and in short-fiber composites. For periodically
laminated composites with transversely isotropic layers, orthotropic layers and layers of monoclinic sym-
metries, exact dispersion relations have been presented by Nemat-Nasser and Yamada (1981), Yamada and
Nemat-Nasser (1987) and Nayfeh (1991), respectively. Furthermore, it is possible to utilize the instanta-
neous properties of the inelastic phases in order to determine the corresponding buckling loads of inelastic
composites.

Buckling of fibers in piezoelectric composites can be predicted by the present wave-buckling analogy
depending on the availability of dispersion relations for propagating shear waves in such type of compos-
ites. For periodically layered piezoelectric composites, exact dispersion relations for harmonic wave prop-
agation have been presented by Minagawa (1995) and Nayfeh et al. (1999). An adjustment of their analyses
to propagating harmonic shear waves in the layering direction should provide the requested dispersion rela-
tion to be utilized in the corresponding buckling analysis. This is a topic for a future research since, to the
authors knowledge, the subject of microbuckling of piezoelectric fibers has not as yet been investigated.
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